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A visualization method is used to obtain the main features of the hydrodynamic 
field for flow past a circular cylinder moving at  a uniform speed in a direction 
perpendicular to its generating lines in a tank filled with a viscous liquid. Photo- 
graphs are presented to show the particular fineness of the experimental tech- 
nique. More especially, the closed wake and the velocity distribution behind the 
obstacle are investigated; the changes in the geometrical parameters describing 
the eddies with Reynolds number ( 5  < Re < 40) and with the ratio h between 
the diameters of the cylinder and tank are given. A comparison with existing 
numerical and experimental results is presented and some remarks are made 
about the calculation techniques proposed up to the present. The limits of the 
Reynolds-number range for which the twin vortices exist and adhere stably to 
the cylinder are determined. 

1. Introduction 
The determination of the plane viscous flow around a circular cylinder moving 

at a constant speed in a fluid previously at rest or, which is equivalent, around 
one at rest in a uniform velocity field is a fundamental problem because all 
difficulties which arise in it are amplified for obstacles of other shapes. Its field of 
application is then very large, being basic to the calculation oE more complex 
flows. Furthermore, in the range of ‘intermediate ’ Reynolds numbers, it has been 
the subject of numerous theoretical and, above all, numerical studies which have 
been developed over the last ten years with the general use of electronic com- 
puters. These studies have attempted to obtain approximate solutions that 
represent the real flow as exactly as possible. They essentially differ from one 
another in the calculation method, which may be analytical (matched Stokes 
and Oseen asymptotic expansions, for instance), semi-analytical (search for 
a solution in the form of series expansions by using, explicitly or not, the principles 
of series truncation) or numericad (finite-difference scheme), and in the expression 
of the boundary conditions. 

For an unbounded flow field, the expression of the boundary conditions sets 
effectively a problem in numerical resolution, as the calculation field is necessarily 
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Author(s) Reynolds numbers 

Investigations from steady-state equatiolts 

Thom (1 928) 
Thom (1933) 
Homann (1936) 
Imai (1951) 
Kawaguti (1953) 
Allen & Southwell (1955) 
Lagerstrom & Cole (1955) 
Proudman & Pearson (1957) 
Kaplun (1957) 
Apelt (1958) 
Dennis & Shimshoni (1 965) 
Underwood (1 968) 
Takaisi (1969) 
Takami & Keller (1969) 
Hamielec & Raal (1969) 
Pruppacher, Le Clair & Hamielec (1970) 
Dennis & Chang (1970) 
Nieuwstadt & Keller (1973) 
Ta Phoc LOC (1975) 

10 
20 

40 
0, 1, 10, 102, 103 

40, 44 
0.01-cO 
0.4, 1.6, 6.4, 10 
0.5- 100 
1, 2, 4, 6, 7, 10, 15, 20, 30, 40, 50, 60 
1, 2, 4, 10, 15, 30, 50, 100, 500 

5 ,  7, 10, 20, 40, 70, 100 
1, 7, 10, 20, 30, 40 
5 ,  20, 40, 60, 100, 120 

1-500 

Investigations from time-dependent equutions 

Hirota & Miyakoda (1965) 
Kawaguti & Jain (1966) 
Ingham, (1968) 
Jain & Rao (1969) 
Son & Hanratty (1 969) 
Thoman & Szewczyk (1969) 
Collins & Dennis (1973) 

40, 100 
10, 20, 30, 40, 50, 60, 100 
40, 100 
40, 60, 100, 200 
40, 200, 500 
1, 30, 40, 200, 600, 4 x lo4, 3 x lo5 
5, 10, 40, 100, 200, 500, los, 5 x lo8, Q) 

TABLE 1. Existing work. 

bounded. To overcome this difficulty, some investigators use a conformal trans- 
formation that reduces the flow field to a bounded one, but this inevitably 
complicates the resolving of the equations; most others impose conditions at 
a finite distance from the obstacle which they think is sufficiently far away. These 
conditions express either the uniformity of the velocity field, or a matching with 
an Oseen flow (Imai’s conditions) or with an irrotational flow, the obstacle being 
either in the middle part of the field, or in an eccentric upstream position. 

Sometimes the calculations have been performed from simplified equations 
(boundary-layer equations), but more often from the Navier-Stokes equations. 
The methods used for this problem can be classified, from a general point of view, 
in two categories, according to  whether they are limited to integration of steady- 
motion equations or whether they are concerned with the steady state as a limit 
of the solutions of the time-dependent equations; in this last case the calculations 
are of course more voluminous. To our knowledge, the main works in these two 
classes are those given in table 1 together with the Reynolds numbers at  which 
they were done. 

An analysis of the literature shows that, except for the length of the attached 
wake, the location of the separation point on the cylinder wall and the drag 
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coefficient, rather little information exists concerning the detailed structure of 
the wake and its evolution against the Reynolds number. 

Experimental work has received relatively less attention than numerical 
calculation. However, there have been several publications which can again be 
classified according to the methods used: 

(i) Visualization using dyed liquid. Thom (1933), 3.5 6 Re  6 lo3. 
(ii) Visualization using bubbles. Shair, Grove, Petersen &, Acrivos (1963), 

40 6 Re  6 150; Grove, Shair, Petersen & Acrivos (1964), 30 6 Re 6 300; 
Acrivos, Leal, Snowden & Pan (1968), 25 6 Re 6 177. 

(iii) Visualization using solid particles. Nisi & Porter (1923), Re = 11.6, 24.2; 
Page (1934), 17.7 < Re < 170; Taneda (1956a, 1964, 1965), 

(iv) Measurement with hot-wire anemometer. Kovasznay (1949), Re = 34, 56; 
Nishioka (1973), 7 < Re  6 80; Nishioka & Sat0 (1974) 10 < Re  < 80. 

(v) Determination of the vebcity gradients on the wall of the obstacie using an 
eZec~rochemica1 technique. DimopouIos & Hanratty (1968), 60 < Re  < 360. 

(vi) Direct measurement of the pressures and of the forces. Homann (1936), 
Re = 100; Tritton (1959), 0.5 < Re < 100. 

It is to be noticed that in these experiments, except those of Taneda, the 
cylinder is not set in a stream of completely uniform velocity. On the other 
hand, whatever the method used, authors agree that their measurements become 
very inaccurate when the Reynolds number is less than 40, the velocity in the 
wake being then very low. Consequently in the experimental field also, the 
information is rather limited, particularly concerning features of the recirculating 
flow in the range of Reynolds numbers between the ‘separation number’ and 
the ‘critical number’ from which the wake begins to be asymmetrical. This is the 
reason why we think that we can provide a valid contribution in this difficult 
field using a method of velocity measurement from visualization photographs of 
fine enough definition, a method which we have previously developed and which 
has been shown to be accurate enough to determine the main features of the flow 
around a sphere, for Stokes flow and immediately beyond, with wall effects 
(Coutanceau 1968, 1972) or without wall effects (Payard & Coutanceau 1974). 

< Re < 2000. 

2. Apparatus and preliminary tests 
Experimental principle (figure 1) 

The object of the experimental technique is to produce plane flow around a cir- 
cular cylinder that is rising with a constant speed V, in a cylindrical tank which is 
of great diameter and which is filled with a liquid whose viscosity is suitable for 
obtaining the desired range of Reynolds numbers. The x axis of the tank is verti- 
cal, the z axis of the cylinder is horizontal and moves on a diametral plane of the 
tank. We take a photograph when the cylinder is about half-way up the tank 
so as to minimize the bottom effects and free-surface effects. The visualization 
so obtained allows us to measure velocities and to observe the flow structure. 
Wall influence is investigated by changing the ratio h between the cylinder and 
tank diameters. 
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T-shaped support 
/ 

FIGURE I .  Schematic illustration of the apparatus. 

Description of the apparatus 

To refer the fluid motion to  a frame that moves with the cylinder and thus 
obtain a steady flow, we couple the motion of the cylinder and the camera using 
a T-shaped support so that they go up together owing to a system of pulleys and 
balance-weights. The motion is guided by a sliding device with ball-bearings and 
is regularized by a hydraulic jack situated below the camera. The working 
speed V, of the cylinder is reached almost instantaneously (in less than s); it  is 
measured by means of a photo-electric cell and an electronic chronometer. 

Transparent Plexiglas cylinders were used; they are respectively 10 mm, 
30mm and 51 mm in diameter and slightly smaller in length than the tank 
diameter in order to reduce end effects: the maximum clearance is 5 mm. They 
are suspended a t  their extremities by two fine wires attached to the T-shaped 
support. The tank in which the cylinder moves is also made of transparent 
Plexiglas to allow visualization; it is 42 em in internal diameter and I m in height. 
It is filled with a vaseline oil 'Marcol80' which isvery stable in time and for which 
we have established the curve of kinematic viscosity against temperature with 
an accuracy better than 1%; for instance it is 31.75 CS at 20 "C. 

The fluid temperature is made uniform before every experiment: after steps 
have been taken to maintain the temperature of the experiment room as constant 
as possible, we improve the temperature uniformity of the fluid by stirring it with 
a screw driven by an electric motor. We then wait till the liquid has come com- 
pletely to  rest before conducting the experiment. A careful control shows that 
the temperature remains constant throughout the fluid within 0.1 "C for more 
khan 1 h. 

To compensate for the effects of the cylindrical diopter, we contrive to make 
the side of the tank that is in the field of the camera optically equivalent to a plane 
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diopter by fixing on the tank wall a Plexiglas container filled with liquid the 
same as that contained in the tank or with a liquid of the same refractive index. 

Visualization 

The visualization method consists of illuminating by a sheet of intense light 
a meridian section of the tank, having suspended fine bright particles uniformly 
in the liquid, and then taking a photograph in the direction normal to the lighted 
plane. 

The aluminium lamellas that are often used in other circumstances exhibit 
here inconvenient optical orientation phenomena (Bourot & Moreau 1949; 
Bourot, Coutanceau & Moreau 1962), and so we have replaced them by tiny 
magnesium cuttings 20 to 40pm long and 4 to 5pm thick. These cuttings, being 
complex in shape, radiate light in nearly all directions (instead of reflecting it in a 
preferential direction as plane lamellas would do, with the consequence that 
certain parts of their trajectories would then be invisible). The speed of these 
particles is low enough for the visualization made in these conditions not to 
raise a ‘fidelity’ problem. 

The lighting is provided by a powerful arc-projector Breguet-Chartier (Chartier 
1937) that works with a 80V continuous tension and a 140A current strength. 
A diaphragm limits the width of pencil rays to 2 em. This pencil of rays is dia- 
phragmed again before it enters the tank by an adjustable narrow slit of about 
1 mm in breadth; the magnesium particles are intensely lit up. To take photo- 
graphs, we use a camera 9 x 12 em fitted with a lens of 135 mm in focal length and 
a variable aperture. 

Technique for analysing photographs 

During the time of exposure, a particle describes a trajectory whose length is 
proportional to the particle velocity. This length can be compared with a reference 
length that represents, taking into account the photographic magnification, the 
cylinder displacement during the exposure. To get good definition we adopt 
a magnification of 0.5. The reference length is obtained by superimposing on the 
photographic plate the trace formed by the image o i  a stationary bright point 
located in the lighted plane. 

We measure the lengths of the dashes directly on the negative, mounting 
them on a stage placed beneath a binocular lens of several magnifying powers 
(between 4 and 25) which can be moved in two perpendicular directions by means 
of micrometer screws, thus allowing the displacements to be measured to  
2 
100 mm. 

The particle position is located by the co-ordinates (x, y )  of the middle of the 
trace referred to the cylinder radius. Provided that some detailed corrections are 
made, especially a ‘thickness correction ’ to account for halation in the sensitized 
film (Coutanceau 1971), we can obtain with this method, some meticulousness 
and patience a very good resolution of the velocity field with, in most of the flow, 
an inaccuracy less than 2%. 
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FIUTJRE 2. Co-ordinate system referred to the cylinder. 
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FIGURE 3. Velocity distribution on the rear flow axis at two cross-sections one cylinder 
diameter distant from each other, for A = 0.12. 0 ,  0, Re = 29.5; A, A, Re = 36-6; 
m, 0,  Re = 51.7. 

Tests on the eSfects of the cylinder erds and on the establishment of the jow 
Preliminary experiments have been carried out to check that the two-dimensional 
flow conditions are well realized. For this purpose, we took photographs of the 
flow in the meridian plane XOZ that contains the cylinder axis (figure 2). The 
corresponding visualizations show that the end effects are smaller if the cylinder 
length h is close to that of the tank diameter. Thus the clearance between the 
cylinder end and the tank wall was made as small as possible. 
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FIGURE 5. Geometrical parameters of the closed wake. 

I n  these conditions, the experiments show that away from the end of the 
cylinder the end effects do not influence the measurement zone for a relatively 
large distance (about 15 ern in total length) on both sides of the median right 
section X O  Y (even in the most unfavourable case). We h d ,  for instance, (i) that 
the velocities are, in practice, in right section planes (figure 7, plate 2 ) .  (ii) That 
the length of the wake attached to the cylinder is the same in a zone that covers 
about the half-length of the cylinder, i.e. 20cm. The wake boundary appears 
clearly in, for example, figure 7; it  is formed by the points of zero velocity. 
(iii) That the velocities in the different right section planes on the rear symmetry 
axis of the flow are the same, within the measurement accuracy, for Reynolds 
numbers regularly spaced in the range selected for experimentation, since the 
curves are superposed (figure 3). 

Further, taking photographs after a greater period of time following the start 
of the cylinder verified that the flow is well established in the survey field. 

3. Results and discussion 
Flow-pattern presentation 

Using the experimental technique just described and changing successively the 
ratio h between the diameters of the cylinder and tank and the Reynolds number 
Re, we get and analyse a very great number of visualized flow patterns (more 
than 200 on the whole); for the most part, these have been taken along the 
cross-section plane XO Y of the cylinder. 

As as example, figure 4 (plate 1) shows the flow downstream of the cylinder for 
Re = 24.3 and h = 0.12. Even for this relatively small value of the Reynolds 
number the closed wake region attached to the rear of the cylinder, usually 
called ‘standing eddies ’ or ‘twin vortices ’, appears very clearly. In  particular, we 
see that the geometrical parameters of this region can be measured: the length L, 
the width 1, the flow separation angle 0, and the position of the vortex centres 
which can be located on the 2 and y axes by a and b (figure 5). 

I n  this case, the axis of the camera is parallel to the cylinder generators; 
it  is set behind the obstacle to allow visualization of all of the standing eddies. 
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FIGURE 10. Velocity distribution on the rear flow axis when h = 0.07 
for different Re values. 

Optical and mask effects occur towards the direction of the upstream obstacle 
that we do not wish to visualize. 

Thus, the very well-lighted white arc of the circle does not correspond to the 
real outline of the cylinder; the big dark circle in front is due to the mask effect 
produced by the end section which is in the camera direction and the two dark 
angles arise from a difference between the refractive indices of the liquid and 
cylinder: a total refraction phenomenon occurs along the opposite portions of 
the cylinder, i.e. in the cross-section S O Y ,  along the arcs of circle located near 
the stagnation points E and F (figure 5). I n  fact, the cylinder is situated between 
the straight parallel lines which limit the outside of the dark angles. 

Figure 6 (plate 2) shows, for steady flow and h = 0.07, the change in shapo of 
the closed wake when the Reynolds number increases from 10.3 to 35.2: its 
length and width become more and more enlarged and the separation point on 
the cylinder moves upstream. For these Re values, it can be seen that the wake is 
steady and the vortices are symmetrical. 

The effect of wall proximity, resulting in fact from the presence of the obstacle, 
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FIGURE 11. Velocity distribution on the flow axis behind the cylinder for Re N 20 and for 
different h values. Our experimental results: 0 ,  h = 0.12, Re = 19.9; A, h = 0.07, 
Re = 20.6; ., h = 0.024, Re = 20.1; -- , h = 0, Re = 20. Nieuwstadt & Keller's 
theoretical data (1973): 0, h = 0, Re = 20. 

which creates a flow-blockage effect, is shown in figure 9 (plate 3) : for comparable 
Re the standing eddies are less developed when the diameter ratio is greater, 
i.e. when the wall is nearer. Then the relative inertia effect is reduced by the wall 
proximity. We have already shown this phenomenon in our study on the flow 
generated by a sphere which moves along the axis of a cylinder filled with a viscous 
liquid (Coutanceau 1971). For the smaller cylinder, i.e. when h = 0.024, our 
apparatus does not permit us to get Re values higher than 25. Figure 8 (plate 2) 
shows the flow when h = 0.07 and Re = 40.3; the standing eddies have just 
become asymmetrical. 

Velocity measurements 
Analysing the photographs the way we have described, we measured the veloci- 
ties in the flow field behind the cylinder, in particular on the flow axis. These 
results are illustrated graphically in figure 10 for h = 0.07 and different Reynolds 
number values ranging from 5 to 40.5. Similar curves have been plotted for 
h = 0.024 and 0.12. At this point we remark that these measurements, made 
for relatively small values of the diameter ratio A, allow us to estimate by 
extrapolation the velocities and the other features of the case h = 0, i.e. the 
case in which the tank is of i nh i t e  diameter. 

The part of the curves below the 2 axis corresponds to returning flow in the 
wake region and thus shows the presence of eddies. For this Reynolds-number 
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FIGURE 13. Evolution of the velocity maximum against Re on the rear flow axis in the 
closed wake of the cylinder. Present study: B, h = 0.12; A, h = 0.07; 0 ,  h = 0.024; 
------ , h = 0. Theoretical data: 0, Kawaguti (1953); 0, Nieuwstadt &; Keller (1973). 

"ID 
FIGURE 12. Velocity distribution on the flow axis behind the cylinder for Re N 40 and for 
different h values. Our experimental results: A, h = 0.07, Re = 40.5. Theoretical data 
for h = 0 and Re = 40:  0, Kawaguti (1953); A, Apelt (1958); 0, Nieuwstadt 8: Keller 
(1973). Other experimental measurements: *, Re = 34, Kovasznay (1949); 0,  Re = 40, 
Nishioka & Sato (1974). 
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FIGURE 14. Location of the velocity maximum plotted against Re. Present study: a, 
h = 0.12; A, h = 0.07; 0 ,  h = 0.024; ------ , h = 0. Theoretical data: 0, Kawaguti 
(1953); 0, Nieuwstadt t Keller (1973). 

range, we see that the velocities in the vortices are very small. However, we have 
been able to measure them with reasonable accuracy, something not done until 
now by any other experimental investigator. As a matter of fact, the only 
measurements that have been made so far concern larger Re values (Re > 40). 
Yet, in the case where there is no wall effect and beyond Re = 40, the flow is 
unsteady and measuring becomes uneasy. That is the reason why some authors, 
such as Groveetal. (1964), artificially stabilized the wake, thus inevitably altering 
it. Consequently, any quantitative information on the flow development in the 
range of Reynolds numbers investigated here can be deduced from these experi- 
ments by extrapolation. 

As in the experimental investigation, obvious difficulties arise in theoretical 
investigations: a very high accuracy is necessary for every step in the calculation 
process. Among the many quoted authors, only Kawaguti (1953), Apelt (1958) 
and Nieuwstadt & Keller (1973) have given some information about the velocity 
in the range of Re considered. As examples, their results and the results inferred 
from our experiments are compared in figures 11 and 12. 

When standing eddies exist behind the cylinder, the velocity along the centre- 
line of the wake, which is negative in the corresponding closed recirculating 
region, takes a maximum value Umax at a certain point Pmax which we locate by its 
distance d from the rear stagnation point F.  The values of Umax and of d are 
interesting parameters to characterize the flow structure in this region. So, their 
evolution with Re is given in figures 13 and 14 when h = 0.024, 0.07, 0.12. The 
extrapolated curve ( A  = 0)  and the numerical values deduced from the results of 
Kawaguti and Nieuwstadt & Keller have also been included. 

16 F L M  79 
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FIGURE 15. Length of the closed wake plotted atainat Re. a, h = 0.12; A, h = 0.07; 
0 ,  h = 0.024; ------, h = 0. 

From our experimental curves, it  appears that the evolution of urnax becomes 
linear rather rapidly after a certain limiting value Re, which, in fact, is only 
slightly dependent on A, for example, when 0 < h < 0.12 we find 16 < Re, < 17. 
The linear parts of the curves have approximately a common slope mumar = 0.0036. 

The position d of this maximum increases in direct proportion to Re, the 
straight-line slopes are the same for the three values of A, consequently it is also 
the same for h = 0; the common value is found to be md 21 0.024. 

From the investigation of the straight lines we can deduce with a fairly good 
accuracy the separation Reynolds number value Re, at which the standing 
eddies appear. 

The closed-wake geometrical-parameter determination 

The main closed-wake geometrical parameters have been estimated, in particu- 
lar, the length, maximum width, spread angle (often called ‘separation angle ’) 
and the vortex-centre co-ordinates of the wake. 

Closed wake length. Especially when it is small, the closed wake length is 
deduced with better accuracy from the curves of the velocity distribution than 
from a direct measurement on the photograph, something which does not seem 
to have been used by other authors. The wake length L is plotted against Re in 
figure 15 for the three studied values of A. These curves show the effect of wall 
proximity on L. The dependence appears to be linear, for the range of Re con- 
sidered, for all h values (0.024 < h < 0.12). I n  contrast to the results obtained by 
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FIUURE 16. Length of the closed wake plotted against Re. Present data: -, h = 0. 

A = 0.02, Grove e6 al. (1964). Numerical solutions: x , Thorn (1933) ; + , Allen & Southwell 
(1955); 0, Apelt (1958); 0 ,  Kawaguti & Jain (1966); 0, Underwood (1968); 0, Takami 
& Keller (1969) : V, Hamielec & Raal (1969) ; m, Thoman & Szewczyk (1969) ; V, Dennis 
& Chang (1970); A ,  Collins &Dennis (1973); A, Nieuwstadt & Keller (1973); +, Ta Phoc 
Loo (1975). 

Experimental measurements: - - , h d 0.03, Taneda (1956b); ---- , A = 0.1, ---, 

Grove et al. (1964) and Acrivos et al. (1968) it  can be seen that, within the accuracy 
of the measurements, the straight-line slope is the same for the three values of A: 
mL N 0-058. The quoted authors gave successively mL = 0.070, 0.064, 0.041, 
0.025 when the ‘blockage parameter, D/h, (ht is the tunnel height and D the 
cylinder diameter) is 0.025, 0.050, 0.10, 0.20. These values of D/ht are then in 
the same range as our h values. However, it  is to be noticed that the tunnel cross- 
section of these experimenters is rectangular (25.4 x 20.32 cm) and so, in their case 
but not in ours, there is a little difference between the length-to-diameter ratio 
of the cylinder and the D/h, ratio. Further, because of their experimental con- 
ditions, the cylinder is not situated, as it is in our experiment, in an entirely 

16-2 
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uniform velocity flow. Also, we remark that the measurements have been made, 
as is often the case, with cylinders of smaller diameters than ours, with the result 
that there is significant imprecision in the reading, especially as the values were 
directly interpreted from the photographs. This appears clearly in figure 9: the 
bigger the cylinder, the better the definition of the flow pattern. 

Moreover there are the experimental results of Taneda (19563) and Nishioka & 
Sat0 (1974), from which we can deduce respectively mL N 0.060 when 
0.005 < h < 0.03 and mL 2: 0.070 for the length-to-diameter ratio D/h = 0.15 
and h = 0.05. 

We see that Taneda’s result is very much in agreement with ours. On the other 
hand Nishioka & Sato’s result is appreciably different. In  this last case the velocity 
measurements are made with a hot-wire technique and with cylinders of 
diameters between 2.01 and 4.03 mm. The authors themselves point out their 
difficulties in measuring near the wall of the cylinder when Re is small. Conse- 
quently, these measurements have been made only for Re > 65 by artificially 
blocking the wake with a wall effect. 

From the curves of LID against Re, determined for different values of A, we 
obtain by extrapolation the curve for h = 0. This curve is plotted in figure 16, 
where we also report, for comparison, the many data in the literature which result, 
for the most part, from numerical investigations. With the drag coefficient, the 
wake length is in fact the most often calculated feature. 

The intersection of the straight lines LID vs. Re with the x axis give again 
values of the separation Reynolds number Re,. We find, within the measurement 
accuracy, the same values we obtained by analysing the maximal velocity vari- 
ation: so Re, = 4.4, 5.2, 7.3, 9.6 when h = 0, 0.024, 0.07 and 0.12. But, because 
of our measurement technique, this last determination is more accurate. 

These values of Re, agree well with Taneda’s result which.gave Re, = 5 when 
0.005 < h < 0.03: so, by plotting the curve Re, vus. h we find Re, = 4.5 when 
h = 0.005 and Re, = 5.4 when h = 0.03. The accuracy of our measurements is 
sufficient to show the wall effects that the other authors considered as negligible. 

The numerically calculated values of Re, for unbounded flow ( A  = 0) are, for 
the most part, perceptibly greater than those resulting from our experiments: 
generally they are between 5 and 7. The slope mL is also greater. This confirms 
that the flow is particularly difficult to calculate within the closed wake. 

However, it  is to be noticed that from Ta Phoc LOC (1975), whose results are 
the most recent to our knowledge, we can deduce values of Re, and mL in very 
good agreement with ours. 

Furthermore it seems from our analysis of the values of L and mL that the 
most recent calculations are generally the most accurate, except for Apelt’s 
results, which are very satisfactory despite being published some time ago. Also, 
it  appears that, of the two calculation techniques described above, the one which 
uses the time-dependent equations seems to be less suited to the determination 
of steady-flow features (with the exception of the work of Collins & Dennis 1973). 

On the other hand, every paper since 1969 which has been based on the 
equations of steady motion gives, when Re = 20, values of L similar to those we 
have deduced from our experiments with a discrepancy less than 4%; however, 
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0 10 20 30 40 50 

Re 

FIGURE 17. Co-ordinates of the vortex centre (a ,  b )  plotted against Re. Abscissa a. Present 
data: m, h = 0.12; A, h = 0.07; 0 ,  h = 0.024; ---, A = 0. Numerical solutions: 
+, Hamielec & Raal (1969). Other experimental measurements: +, Grove et a2. (1964). 
Ordinate6.Presentdata: 0 , A  = 0.12; n,h = 0.07; 0 .h  = 0*024;-----,A = O.Numerica1 
solutions: x , Hamielec & Rae1 (1969). Other experimental measurements: 0, Grove etal .  
(1964). 

for Re < 20 the calculated lengths are, for the most part, perceptibly lower than 
those we obtain, whereas for Re > 20 they are for the most recent ones in good 
agreement with ours and rather appreciably higher for the former publications. 

Finally, we remark that from the point of view of the infinite boundary con- 
ditions, the matching process with the irrotational flow or with Oseen %ow seems 
to provide results closer to experimental results than the matching process with 
the uniform flow on the exterior boundary, even if this boundary is relatively 
distant from the obstacle 

Vortex cores. The evolution of the ‘vortex-core position’ that we have located 
by the co-ordinates a, b is plotted against the Reynolds number for the three 
studied values of h in figure 17. By extrapolation, we have drawn the curve 
corresponding to the unbounded field; we added Hamielec & Raal’s (1969) 
calculated values, as well as the experimental results obtained by Grove et al., 
who seem to be the only authors to give this information explicitly, but these 
values appear to be rather lacking in precision. 

Our experiments show that the length a between the rear stagnation point and 
the line of the vortex centres changes in direct proportion to Re for the different 
values of A;  the slope ma of the corresponding straight lines is about 0.021 for 
the three investigated cases. 

Then, the ratio a/L between this length a and the wake length L is constant, 
its value being 0.36. Acrivos et al. made a similar remark and gave alL N 4 for 
D/h, < 0.1 and Re > 30. 
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0 I0 20 30 40 50 
Re 

FIUURE 18. The separation angle plotted against Re. Present data: W, h = 0-12; A, 
h = 0.07; --- , h = 0. Numerical solutions: +, Dennis & Shimshoni (1965); 0 ,  Kawa- 
guti & Jain (1966); +, Underwood (1968); v,  Takami & Keller (1969); 0, Hamielec & 
Rml(l969); A, Thoman & Szewczyk (1969); 0, Dennis & Chang (1970);V, Nieuwstadt 
& Keller (1973); 0, Ta Phoc Loc (1975). Experimental measurements: x , Thorn (1933); 
*, Taneda (1966a); +, with splitter plate, .I., no splitter plate, Grove et al. (1964). 

On the other hand, contrary to the results of Grove et al. for Re > 76 and 
Nishioka & Sat0 (1974) for Re > 65, we establish that the maximum velocity 
point Pmax is not located on the line that joins the vortex centres, but is rather 
appreciably downstream of this line: the ratio between the distances d and a is 
about 1-14 in all the studied cases. 

Separation angle. The evolution of the separation angle 0, with Re for h = 0.07 
and 0-12 is presented in figure 18; the measurement of 19, can be made with good 
accuracy for the values of Re close to Re, only for sufficiently big cylinders; 
therefore we do not give any result for h = 0-024. In comparison with the 
previous feature evolution against the ratio A, if we deduce, by a linear 
extrapolation, the 0, value for h = 0, we obtain a probably slightly higher 
value than the true one. 

The values given in the literature for 0, are rather dispersed, although some 
of them agree well with the results of our experiments. With regard to the other 
experimental values, it appears that the value given explicitly by Taneda, for 
Re = 40, is close to ours, but those of Grove et al. are different. This difference 
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FIGURE 19. Shape of the wake boundary. Present study: ., h = 0.12, Re = 20; A, 
h = 0.07, Re = 21; --- , A = 0, Re = 20; ., h = 0.12, Re = 30.2; A, h = 0.07, 
Re = 31; --- , h = 0, Re = 30;  m, h = 0.12, Re = 38.6; A, h = 0.07, Re = 40.5; 
---, h = 0 ,  Re = 40. Theoretical data: 0, Apelt (1958); 0,  Takami t Keller (1969); 
A, Dennis & Chang (1970); 0, Ta Phoc LOC (1975). 

might be explained by the fact that these authors deduced their results from 
a method which used a heated cylinder; thus they probably obtained a different 
flow from the one investigated here. 

For Re > 20 and h = 0 (i.e. no wall effect) the curve of 0, against Re becomes 
almost a straight line when plotted on a logarithmic scale. This agrees with the 
results of, for instance, Kawaguti & Jain (1966), Takami & Keller (1969), Son & 
Hanratty (1969) and Pruppacher, Le Clair & Hamielec (1970). This tendency 
is also verified for a confined flow but the Reynolds numbers must be as much 
higher as the diameter ratio is larger. 

Attached-wake boundary. The attached-wake boundary is drawn in figure 19, 
for Re = 20, 30, 40 and h = 0, 0-07, 0.12. 

For unbounded flow ( A  = 0) ,  the wake boundary is determined from the 
experiments as follows: for any value of A, let y be the ordinate of a wake boundary 
point and let 6 ( = x - R )  be its abscissa measured from the rear stagnation point. 
Introducing a reduced abscissa q = a/&, and reduced ordinate 9 = y/yl, where 
8, and y1 are typical dimensions of the wake, for example the wake length and 
half the distance between its vortex cores, we find that the boundary (3 vs. 7) 
is independent of h and so distributions for different values of h merge into a single 
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FIUURE 20. Abscissa of the maximum width plotted against Re. 
a, A = 0.12; A, A = 0.07; 0 ,  A = 0 ;  --- I xs. 
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FIGURE 21. The maximum width plotted against Re. 
a, h = 0.12; A, h = 0.07; 0 ,  h = 0; --- , Is. 

curve. The wake length and the core separation being known from extrapolation 
when h = 0, we can deduce the corresponding wake boundary. The shape 
evolution againt Reynolds number and against the diameter ratio h appears 
clearly in figure 19. 

In particular, it is to be remarked that the wake width takes a maximum 
value (Imax) within a section which moves away from the cylinder when Re 
increases; this section is located by its abscissa (xi-), measured from the 
centre of the right section of the cylinder (figure 5 ) .  

On figure 19 we have plotted some data that result from numerical calcula- 
tions; we have kept only the most recent ones. 
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(5 - R)/L 
FIauRE 22. Velocity similarity on the rear flow axis in the closed wake. h = 0.12: 0, 

A, Re = 40-5. 
Re = 14.6; A, Re = 25.1; 0, Re = 29.5. h = 0.07: ., Re = 21.2; 0 ,  Re = 29.5; 

It is seen that, although the values given by Ta Phoc Loc are generally very 
close to our experimental values for the length and the separation angle, the 
wake shape that this author deduces from his calculations is too angular towards 
its rear extremity; the general wake shapes obtained by Apelt, Takami & Keller 
and Dennis & Chang are rather closer to the experimental boundaries that we 
have deduced for the unbounded flow (A = 0). However, the maximum width 
calculated by the various authors is, for a given value of Re, always Iower than 
ours. From this point of view, the Dennis & Chang calculations give the best 
results, particularly when Re = 40, when we see that the calculated and experi- 
mental boundaries coincide, up to a diameter length downstream of the cylinder. 

Maximum wake width. Figures 20 and 21 show the variation of the maximum 
width Zmax and the abscissa x,,, of the corresponding section against Re. We 
find again the fact that we have pointed out before: the typical abscissae of the 
attached wake increase in direct proportion to Re. 

Analysis of experimental results shows also that this maximum width does not 
always exist: near the separation Reynolds number, immediately after the 
attached wake appears, its width regularly decreases from I,, its value on the 
cylinder, down to z0ro at its rear extremity. It was necessary, to find this maxi- 
mum again, to  give to the outline of the wake an imaginary prolongation within 
the right section of the cylinder, as Van Dyke (1964) proposed for the sphere. 
That is the reason why we have completed our figure by drawing the curves that 
give the width 1, and abscissa x, of the corresponding section; the intersection 
between the straight lines x, and x, provides the limit Re, for the existence 
of a maximum. Furthermore, it is seen that from this value of Re, the curves 
of ls and Zmax are matched in a continuous way. 

For the two cases studied ( A  = 0.12 and h = 0.07) and also for the extrapolated 
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FIUURE 23. Similarity of the closed-wake shape: 

0 ,  Re = 20; A, Re = 30; .,Re = 40. 

\Re ... 10 
A\ - 
0.12 L 0.03 

a 0.01 
b 0.12 
X1IIl.X 

L a x  
0, 

- 
- 
- 

0.07 

0.024 

0 

0.16 
0.06 
0.24 

- 
21*0° 
0.28 
0.11 
0.29 
0.34 
0.12 
0.31 
- 
- 
32.5" 

15 20 

0.31 0.60 
0.12 0.22 
0.31 0.39 
- 0.55 
- 0.68 
30.0" 40.0" 
0.45 0.73 
0.17 0.27 
0.36 0-42 
- 0.59 
- 0.73 

3 6 ~ 0 ~  42.3" 
0.58 0.87 
0.21 0.31 
0.39 0.45 
0.63 0.93 
0.23 0.33 
0.40 0.47 
- 0.66 
- 0.80 

40.5" 44.8" 

30 40 

1.17 1.75 
0.42 0.62 
0.47 0.52 
0.71 0.86 
0.83 0.96 
48.0" 52.0" 
1.31 1.89 
0.48 0.68 
0-50 0.56 
0.75 0.92 
0.88 1.01 

49.0" 52.8" 
1.46 2.04 
0.52 0.73 
0.53 0.58 
1.53 2.13 
0.55 0.76 
0.54 0-59 
0.83 0.99 
0.95 1.08 
50.1' 53.5" 

TABLE 2. Numerical values of the closed-wake geometrical parameters 
deduced from our experiments. 
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10 
Author(&? <-'-, 

Thom (1933) 

Kawaguti (1 953) 

AUen & 
Southwell (1955) 

Tanede (1956 a, b) 

Apelt (1958) 

Dennis & 
Shimshoni (1965) 

Hirota & Miya- 
koda (1965) 

Kawaguti & 
Jain (1966) 

Underwood 
(1968) 

Ingham (1968) 

Takami & 
Keller (1969) 

Hamielec & 
Raal (1969) 

Son & Han- 
ratty (1969) 

Jain & Rao 
(1969) 

Thoman & 
Szewczyk (1969) 

Dennis & Chang 
(1970) 

Nieuwstadt & 
Keller (1973) 

Collins & Dennis 
(1973) 

Ta Phoc Loc 
(1975) 

0.31 
34.8' 

0.3 
- 

- 
- 

0.56 
34.8" 

0-30 
30.8" 

0.24 
30" 
- L 
0*25* 

29*3'* 

L 0*303* 
0, 32*4'* 
a 0*169* 
b 0.211* 

0*265* 
29.6' 

0.217* 
27*96'* 

0*26* 
29.6'* 

20 

0.87 
40" 
- 
- 
- 
- 
0.9 - 
- 
- 
1.06 

42.8" 
- 
- 
1.00 

43.8' 
- 
- 
- 
0*935* 

43*65"* 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.94* 
43.7" 

0*893* 
43-37"* 
- 
- 
0.93 

43' 

40 

- 
- 
1-6177* 

52.5" 
- 
- 
2*1* 

2.135* 

53O* 

50" 

0.94 
52.3' 

1.46 
38" 

53.7" 
2*515* 

- 
- 
1.6 

2*325* 
53*55"* 
- 
- 
- 
- 

2*515* 
53.9'* 

2*65* 
54*2O* 
- 

52" 

2.345* 
53-8" 

2*179* 
53.34"* 

2-15* 
53.6'* 

2.14 
53" 

TABLE 3. Numerical values of some geometrical parameters of the closed wake 
given by different authors for e flow of infinite extent. 
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case ( A  = 0 ) ,  the straight lines xs and xlmX intersect, within the accuracy of the 
measurement, at the same value of x (x/D N 0.45), corresponding to Re, being, 
respectively, about 13.9, 11.3, 7.4. For these values of Re,, the wake boundary 
then leaves the obstacle wall in a direction parallel to the flow. 

The slope of the straight lines giving the abscissa of the maximum width 
section against R e  is about 0.016. 

It is then possible to deduce from it that the ratios between the abscissa of the 
maximum width section and the abscissae of the cores of the maximum velocity 
section are respectively 0.76 and 0.67: consequently the maximum width section 
is located rather in front of the cores and therefore in a more forward position 
than the maximum velocity section. 

We get that, when 20 < R e  < 40, the ratio between the length that separates 
the cores and the maximum width of the wake is nearly constant, for any values 
of R e  and A;  then we have 0.55 < b/lmax < 0.58, while Acrivos et al. found 
bllmax 2: $ when D/h, < 0.1 and R e  > 30. 

W a k e  similarity 
The different properties that we have pointed out, concerning the variation of 
the parameters and of the velocities within the attached wake, seem to show that 
there is a similarity in the evolution of these various features. 

That is shown in figures 22 and 23, where we have plotted the ratios U/Umax 

and l/lmax against 7 ( = ( x  - R)/L). It is seen that the results, for different values 
of R e  and of A, respectively merge in a single curve. 

However with regard to l/lmax, this property is not verified near the cylinder 
wall; it  is so only for x - R 2 0.2L. 

In  table 2 we have recapitulated the numerical values of the geometrical 
parameters of the attached wake that are deduced from our experiments. In 
table 3 we present various numerical information given by the authors either 
explicitly (indicated by an asterisk) or by means of curves.? 

Range of wake stability: determination of the critical Reynolds number 

We tried to determine the value of the Reynolds number giving the upper limit 
of wake stability (‘critical Reynolds number ’); we analyse its evolution against 
the wall effect, i.e. against the diameter ratio A. 

In  particular, a systematic study of the variation of wake shape and of the 
core position against R e  (near Re,.) shows, when A = 0.07, that the wake boundary 
begins to warp towards is rear end and that the distances between each of the cores 
and the rear stagnation point P become different: this last phenomenon is 
easier to measure than the boundary deformation, which is why we keep this 
last test to detect the ‘birth’ of the instability; that does not seem to be used by 
other authors. 

Let a- and a+ be the lengths that separate the nearest and the farthest vortex 
centres from the plane of the rear stagnation point. We compare their evolution 
against R e  with the prolongation of the curve a us. R e  that we have obtained in 

t The values read on the curves of the cited authors can be rather lacking in precision 
as the corresponding diagrams are sometimes published on a very small scale. 
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0 0.05 0.1 0.15 

h 
FIGURE 24. Critical Reynolds number against the diameter ratio A. Present data: 0 ,  
h = 0.07; -0-, I,, = 1. Experimental measurements: + , Dupin & Teissie-Sober 
(1928); A, Thom (1933); 0, Homann (1936); ., Kovasznay & Roskho (1949-1954); 
-A--, Shair et al. (1963). 

the case of symmetrical flow. It appears that the length a- begins to decrease 
abruptly from some value of Re and then becomes stable at about alD = 0.55, 
whiIe the length a+ changes in fairly random way; according to the inevitable 
small variations in the experimental conditions either core can be nearest the 
cylinder. 

Investigation of all the results (about twenty studied photographs when 
39 < Re < 44) gives as the value of the critical Reynolds number Re, II 39.5 
when h = 0.07. 

We notice that, for this value of Re,., the maximum wake width is nearly equal 
to the length of the cylinder diameter. To verify this result it  will be interesting 
to  do again this work for other values of the diameter ratios h but this requires a 
rather important modification of our apparatus; we are thinking of attempting 
this study in the future. 

If, as a temporary assumption, we suppose this property is the same for other 
values of A, we can deduce the Re, values from the curves I,%, vs. Re, and then 
find, respectively, Re, = 43, 39.5, 36, 34 when h = 0.12, 0.07, 0.024 and 0. 

This evolution is shown in figure 24 and a comparison is made with the results 
of Dupin & Tessie-Solier (1928), Thom (1933), Homann (1936), Kovasznay 
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(1949), Roshko (1954) and Shair et al. (1963). When 0.005 < h < 0-03, Tanedrt 
remarks that the wake ‘trail’ begins to oscillate at Re = 30, while he perceives 
the vortex asymmetry only at Re = 45. This comparison of the different results 
shows, as we have furthermore pointed out during experimental investigation, 
that the accurate location of the vortex cores allows us to show an asymmetry so 
faint that it will not appear by means of a global investigation of the photographs. 
It is the reason why the critical Reynolds numbers that we have found are 
consistently smaller than the values usually given in the literature. 

4. Conclusion 
The fine technique of visualization that we have perfected allows us to give 

the detailed features of the hydrodynamic field for Reynolds numbers ranging 
from the ‘separation number’ (for which the flow separates and the attached 
closed wake appears) to the ‘ critical number ’ (from which it becomes asymmetri- 
cal and unstable). 

We have measured the velocities on the flow axis, determined the geometrical 
parameters of the attached wake and shown their evolution against Re and 
against the diameter ratio A. 

This systematic investigation allows us, in particular, to deduce the flow 
features for the unbounded case ( A  = 0) and thus to make a comparison with the 
existent numerical results, allowing us to formulate some critical comments 
about certain points of the different calculation techniques. 

On the other hand, we have shown general properties concerning the attached 
wake structure, in particular the following. 

(i) The wake length and all the abscissae that characterize it and that we have 
studied (abscissae of the cores, of the maximum velocity point, of the maximum 
width section) increase linearly with increasing Reynolds number and analogously 
whatever the wall effect may be (for 0 < h < 0.12 the slopes are identical) ; such is 
not the case for the ordinates, except, perhaps, for the greatest values of the 
studied Reynolds numbers. 

(ii) The variation of the velocities along the returning flow axis, like that of 
the longitudinal attached wake features, with the Reynolds number and with the 
diameter ratio h is similar; this allows us to regroup certain results in a main 
curve. The similarity is also verified for the transverse features, but outside the 
region very close to the cylinder. 

Finally, we have determined the limiting values of the Reynolds number for 
which a stable attached wake exists and shown their greater or lesser sensibility 
to the wall effect. 

REFERENCES 

ACRIVOS, A., LEAL, L. G., SNOWDEN, D. D. & PAN, F. 1968 Further experiments on 
steady separated flows past bluff objects. J .  Fluid Mech. 34, 25. 

ALLEN, D. N. DE G. & SOUTHWELL, R. V. 1955 Relaxation methods applied to determine 
the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quard. J .  
Mech. Appl. Math. 8 ,  129. 



ViscousJlow in the wake of a cylinder. Part 1 255 

APELT, C. J. 1958 The steady flow of a viscous fluid past a circular cylinder at Reynolds 
numbers 40 and 44. Aero. Res. Counc. R. & M .  no. 3175. 

BOUROT, J. M., COUTANCEAU, M. & MOREAU, J. J. 1962 Sur 1’6tude theorique et  exp6ri- 
mentale des phBnom6nes d’orientation prBsent6s par une suspension lamellaire dam 
un Bcoulement de Stokes. C.R. A d .  Sci. 255, 1377. 

BOUROT, J. M. & MOREAU, J.  J. 1949 Sur les zones d’inBgale luminosit6 observ6es dans 
certaines visualisations d’Bcoulements. C.R. Acad. Sci. 228, 1667. 

CHARTIER, C. 1937 Chronophotogramm6trie plane et st6r6oscopique. Minist&e de l’Air, 
Publ. Sci. Tech. no. 114. 

COLLINS, W. M. & DENNIS, S. C. R. 1973 Flow past an impulsively started circular 
cylinder. J .  Fluid Mech. 60, 105. 

COUTANCEAU, M. 1962 Etude thBorique et  exp6rimentale de l’orientation des particules 
lamellaires mises en suspension dans un 6coulement mhridien. These de Doctorat de 
Troisieme Cycle. 

COUTANCEAU, M. 1968 Mouvement d’une sphere dans l’axe d‘un cylindre contenant un 
liquide visqueux. J .  Mic. 7, 49. 

COUTANCEAU, M. 197 1 Contribution B 1’6tude th6orique et  exp6rimentale de 1’6coulement 
autour d’une sphPre qui se deplace dans l’axe d’un cylindre, B faible nombre de 
Reynolds ou en regime irrotationnel. These de Doctorat d’Etat. 

1972 Sur 1’6tude experimentale de 1’8coulement engendr6 par une 
sphere qui se dBplace dans l’axe d’un cylindre au-deb du regime de Stokes. C.R. 
Acad. Sci. A 274, 853. 

DENNIS, S. C. R. & CHANG, G. Z. 1970 Numerical solutions for steady flow past a circular 
cylinder at Reynolds numbers up to 100. J .  Fluid Mech. 42, 471. 

DENNIS, S. C. R. & SHIMSHONI, M. 1965 The steady flow of a viscous fluid past a circular 
cylinder. Aero. Res. Counc. Current Papers, no. 797. 

DIMOPOULOS, H. G. & HANRATTY, T. J. 1968 Velocity gradients a t  the wall for flow 
around a cylinder for Reynolds numbers between 60 and 360. J .  Fluid Mech. 33, 303. 

DUPIN, P. & TEISSIE-SOLIER, M. 1928 Rev. Gin. Elec. 24, 53. 
FACE, A. 1934 Photographs of fluid flow revealed with an ultramicroscope. Proc. Roy. 

Soc. 144, 381. 
GROVE, A. S., SHAIR, F. H., PETERSEN, E. E. & ACRIVOS, A. 1964 An experimental 

investigation of the steady separated flow past a circular cylinder. J .  Fluid Mech. 
19, 60. 

HAMIELEC, A. E. & RAAL, J. D. 1969 Numerical studies of viscous flow around circular 
cylinders. Phys. Fluids, 12, 11. 

HIROTA, I. & MIYAKODA, K. 1965 Numerical solution of KArmAn vortex street behind 
a circular cylinder. J .  Met. SOC. Japan, 43, 30. 

HOMANN, F. 1936 Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und 
um die Kugel. Z .  angew. Math. Mech. 16, 153. 

IMAI, I. 1951 On the asymptotic behaviour of viscous fluid flow a t  a great distance from a 
cylindrical body, with special reference to Filon’s paradox. Proc. Roy. Soc. A 208,487. 

INGHAM, D. B. 1968 Note on the numerical solution for unsteady viscous flow past a 
circular cylinder. J .  Fluid Mech. 31, 815. 

JAIN, P. C. & RAO, K. S. 1969 Numerical solution of unsteady viscous incompressible 
fluid flow past a circular cylinder. Phys. Fluids Suppl. 12, I1 57. 

KAPLUN, S. 1967 Low Reynolds number flow past a circular cylinder. J .  Math. Mech. 6, 
595. 

KAWAGUTI, M. 1953 Numerical solution of the Navier-Stokes equations for the flow 
around a circular cylinder a t  Reynolds number 40. J .  Phys. SOC. Japan, 8, 747. 

KAWAGUTI, M. & JAIN, P. C. 1966 Numerical study of a viscous fluid flow past a circular 
cylinder. J .  Phys. Xoc. Japan, 21, 2055. 

KOVASZNAY, L. S. G. 1949 Hot-wire investigation of the wake behind cylinders a t  low 
Reynolds numbers. Proc. Roy. SOC. A 198, 174. 

COUTANCEAU, M. 



256 

LAOERSTROM, P. A. & COLE, J. D. 1955 Examples illustrating expansion procedures for 

NIEUWSTADT, F. & KELLER, H. B. 1973 Viscous flow past circular cylinders. Computers & 

NISHIOKA, M. 1973 Hot-wire investigation of the steady laminar wake behind a circular 

NISHIOKA, M. & SATO, H. 1974 Measurements of velocity distributions in the wake of 

NISI, H. & PORTER, A. W. 1923 On eddies in air. Phil. Mag. 46 (6),  754. 
PAYARD, M. & COUTANCEAU, M. 1974 Sur 1'6tude exp6rimentale de la naissance et de 

l'6volution du tourbillon attach6 It l ' a r r i h  d'une sphere qui se d6place, 8. vitesse 
uniforme, dans un fluide visqueux. C.R. A d .  Sci .  B 278, 369. 

PROUDMANN, I. & PEARSON, J. R. A. 1957 Expansion at small Reynolds numbers for the 
flow past a sphere and a circular cylinder. J .  Fluid Mech. 2, 237. 

PRUPPACHER, H. R., LE CWR, B. P. & HAMIELEC, A. E. 1970 Some relation between 
drag and flow pattern of viscous flow past a sphere and a cylinder at low and inter- 
mediate Reynolds numbers. J .  Fluid Mech. 44, 781. 

ROSHKO, A. 1954 N.A.C.A. Rep. no. 1191. 
SHAIR, F. H., GROVE, A. S., PETERSEN, E. E. & ACRJTOS, A. 1963 The effect of confining 

walls on the stability of the steady wake behind a circular cylinder. J .  Fluid Mech. 
17, 546. 

SON, J. S. & HANRATTY, T. J. 1969 Numerical solution for the flow around a cylinder 
at Reynolds numbers of 40, 200 and 500. J .  Fluid Mech. 35, 369 

TAKAISI, Y .  1969 Numerical studies of a viscous liquid past a circular cylinder. Phys. 
Fluids Suppl. 12, I1 86. 

TAKAMI, H. & KELLER, H. B. 1969 Steady two-dimensional viscous flow of an incom- 
pressible fluid past a circular cylinder. Phys. Fluids Suppl. 12, I1 51. 

TANEDA, S. 1956a Experimental investigation of the wakes behind cylinders and plates 
at low Reynolds numbers. J .  Phys. Soe. Japan, 11, 302. 

TANEDA, S. 1956 b Experimental investigation of the wakes behind a sphere a t  low 
Reynolds numbers. J .  Phys. SOC. Japan., 11, 1104. 

TANEDA, S. 1964 Experimental investigation of the wall-effect on a cylindrical obstacle 
moving in a viscous fluid a t  low Reynolds numbers. J .  Phys. Soc. Japan, 19, 1024. 

TANEDA, S. 1965 Experimental investigation of vortex streeta. J .  Phys. SOC. Japan, 20, 
1714. 

TA PHOC LOC 1975 Etude num6rique de 1'6coulement d'un fiuide visqueux incompressible 
autour d'un cylindre fix0 ou en rotation. Effet Magnus. J .  M6c. 14, 109. 

THOM, A. 1928 Aero. Res. Counc. R. & M .  no. 1194. 
THOM, A. 1933 The flow past circular cylinders a t  low speeds. Proc. Roy. SOC. A 141, 651. 
THOMAN, D. C. & SZEWCZYK, A. A. 1969 Time-dependent viscous flow over a circular 

TRTTTON, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds 

UNDERWOOD, R. L. 1968 Calculation of incompressible flow past a circular cylinder at 

VAN D m ,  M. 1964 Perturbation methods in fluid mechanics. Appl. Math. Mech. 8, 149. 
ZANDBERQEN, P. J. 1971 The viscous flow around a circular cylinder. Lectyre Notes in 

M .  Coutanceau and R. Bouard 

the Navier-Stokes equations. J .  Rat. Mech. A m l .  4, 817. 

Fluids, 1, 59. 

cylinder. Bull. Umiv. Osaka Prefecture, 21, 205. 

a circular cylinder at low Reynolds numbers. J .  Fluid Mech. 65, 97. 

cylinder. Phys. Fluids Suppl. 12, I1 76. 

numbers. J .  Fluid Mech. 6, 547. 

moderate Reynolds numbers. J .  Fluid Mech. 37, 95. 

Physics, vol. 8, p. 144. Springer. 



PlUtP 1 

(Fuciy /  p .  95ti) 



(a) Re = 10.3, h = 0.07. 

(6) He = 16.6, h = 0.07. ( d )  R e  = 35.4, h = 0.07. 

I'ruvar: 6 



( b )  Re = 20.6, h = 0.07. 


